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Abstract

In this paper a realistic estimation of the effective breadth of a stiffened plate is presented. For the estimation of the

effective breadth the adopted model contrary to the models used previously takes into account the resulting inplane

forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response

of the system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface

of the plate. The forces at the interface, which produce lateral deflection and inplane deformation to the plate and

lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The

solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation

method. After the solution of the plate––beams system is achieved, the distribution of the axial stresses across the plate,

resulting from both the bending and the inplane action of the plate, is obtained. Integrating this distribution across the

plate the values of the effective breadth are obtained. The influence of these values from the beam stiffness and their

variation along the longitudinal direction of the plate are shown as compared with those obtained from various codes

through numerical examples with great practical interest. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Today stiffened plates are commonly used in the construction of long span slabs, long river or valley
bridge decks or floors of aircraft carriers due to the economic and structural advantages of such systems.
Stiffened plate structures are efficient, economical, functional and readily constructed of most common
materials.
Two design parameters of stiffened plates, namely effective breadth and effective width, are commonly

used in structural engineering for thoroughly different engineering purposes (Schade, 1951; Wang and
Rammerstorfer, 1996). Both of these parameters are used to describe the effectiveness of a breadth or width
of stiffened plate structures in which the axial stress distribution across the plate is not uniform.
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The design parameter of effective breadth is used when we consider a stiffened plate subjected to lateral
loading. Due to the aforementioned loading the plate bends out of its original plane, while the distribution
of the axial stresses across the plate is not uniform because of the transmission of shear from the stiffener
through the plate (shear lag phenomenon). Defining the effective breadth of the slab (Timoshenko and
Goodier, 1951) as the breadth which would sustain a force equal to the actual force in the slab, if the
longitudinal stress across the breadth was constant and equal to the theoretical stress at the neutral axis of
the slab at the beam edge, the designer is enabled to calculate the bending behaviour of the stiffened
structure by the use of simple beam theory.
The design parameter of effective width is used when we consider a stiffened plate subjected to inplane

compressive loading. Due to local buckling of the plate between the stiffeners the axial stresses distribution
across the plate is also not uniform. Using the concept of the effective width, in an analogous manner with
that of the effective breadth, the designer may estimate the postbuckling strength of a stiffened plate under
compression.
In this paper a realistic estimation of the effective breadth of a stiffened plate is presented. Various

definitions of the effective breadth have been given from various researchers depending on the intensity of
the approximating constant stress (theoretical stress at the beam edge or at the axis of the stiffening beam)
and the inclusion or not of the beam width (Schade, 1951; Wang and Rammerstorfer, 1996; Lee, 1962). For
the purpose of this paper the definition given in Timoshenko and Goodier (1951) will be adopted, while for
comparison reasons all available definitions will be reported.
For the estimation of the effective breadth or the effective width of stiffened plates, approximate methods

such as the finite strip method (Wang and Rammerstorfer, 1996), energy methods (Tsutomu, 1982) or the
FEM (Tsutomu, 1993) have been employed. In all the aforementioned methods the adopted model for the
analysis of the plate–beams system neglects the shear forces at the interfaces and the resulting inplane forces
and deformations of the plate as well as the axial forces and deformations of the beam. This assumption
results in discrepancies from the actual response of the stiffened plate.
In this paper for the estimation of the effective breadth the adopted model contrary to the models used

previously takes into account the resulting inplane forces and deformations of the plate as well as the axial
forces and deformations of the beam, due to combined response of the system. The analysis consists in
isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at
the interface, which produce lateral deflection and inplane deformation to the plate and lateral deflection
and axial deformation to the beam, are established using continuity conditions at the interface. The so-
lution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog
equation method (AEM) (Sapountzakis and Katsikadelis, 2000). After the solution of the plate–beams
system is achieved, the distribution of the axial stresses across the plate, resulting from both the bending
and the inplane (arising from the shear forces at the interfaces) action of the plate, is obtained. Integrating
this distribution across the plate and following the aforementioned definition of the effective breadth we
obtain its values in the longitudinal direction of the plate. The influence of these values from the beam
stiffness and their variation along the longitudinal direction of the plate are shown as compared with those
obtained from various codes through numerical examples with great practical interest.

2. Statement of the problem

2.1. Modeling of the ribbed plate

Consider a thin elastic plate having constant thickness hp, occupying the domain X of the x, y plane and
stiffened by a set of parallel beams. The plate may have J holes while its boundary C ¼ [J

j¼0Cj may be
piecewise smooth (Fig. 1). For the sake of convenience the x axis is taken parallel to the beams. The plate is
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subjected to the lateral load g ¼ gðxÞ, x : fx; yg and is supported on its boundary, whereas the beams may
have point supports.
For the solution of the problem at hand and the evaluation of the distribution of the axial stresses across

the plate the method presented by Sapountzakis and Katsikadelis (2000) is adopted here. According to this
method the stiffening beams are isolated from the plate by sections in the lower outer surface of the plate,
while tractions at the fictitious interfaces are taken into account (Fig. 2). These tractions result in the
loading of the beam as well as the additional loading of the plate. Their distribution is unknown and is
established by imposing displacement continuity conditions at the interfaces.
The integration of the tractions along the width of the beam result in line forces per unit length which are

denoted by qx, qy and qz. Taking into account that the torsional stiffness of the beam is small, the traction
component qy , in the direction normal to the beam axis is ignored. The other two components qx and qz

produce the following loadings along the trace of each beam.
In the plate:

(i) A lateral line load �qz at the interface.
(ii) A lateral line load �oMp=ox due to the eccentricity of the component qx from the middle surface of
the plate. Mp ¼ qxhp=2 is the bending moment.
(iii) An inplane line body force qx at the middle surface of the plate.

In each beam:

(i) A transverse load qz.
(ii) A transverse load oMb=ox due to the eccentricity of qx from the neutral axis of the beam cross section.
(iii) An inplane axial force qx.

Fig. 2. Thin elastic plate stiffened by beams (a) and isolation of the beams from the plate (b).

Fig. 1. Two dimensional region X occupied by the plate.
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The structural models of the plate and the beams are shown in Fig. 3.
On the base of the above considerations the response of the plate and of the beams may be described by

the following boundary value problems.
(i) For the plate: The plate undergoes transverse deflection and inplane deformation. Thus, for the

transverse deflection we have

Dr4wp � Nx
o2wp
ox2

�
þ 2Nxy

o2wp
oxoy

þ Ny
o2w
oy2

�
¼ g �

XK
k¼1

qðkÞz

 
þ
oM ðkÞ

p

ox

!
d yð � ykÞ in X ð1Þ

a1wp þ a2Vn ¼ a3 on C ð2aÞ

b1
owp
on

þ b2Mn ¼ b3 ð2bÞ

where wp ¼ wpðxÞ is the transverse deflection of the plate; D ¼ Eph3p=12ð1� v2Þ is its flexural rigidity with Ep
being the elastic modulus and m the Poisson ratio; Nx ¼ NxðxÞ, Ny ¼ NyðxÞ, Nxy ¼ NxyðxÞ are the membrane
forces per unit length of the plate cross section; dðy � ykÞ is the Dirac’s delta function in the y direction; Mn

and Vn are the bending moment normal to the boundary and the effective reaction along it, respectively, and
they are given as

Mn ¼ �D
o2wp
on2

�
þ v

o2wp
ot2

�
ð3Þ

Vn ¼ �D
o

on
r2wp

�
� ðv � 1Þ o

os
o2wp
onot

�
ð4Þ

Finally, ai, bi ði ¼ 1; 2; 3Þ are functions specified on the boundary C.
The boundary conditions (2a) and (2b) are the most general linear boundary conditions for the plate

problem including also the elastic support. It is apparent that all types of the conventional boundary
conditions (clamped, simply supported, free or guided edge) can be derived form these equations by
specifying appropriately the functions ai and bi (e.g. for a clamped edge it is a1 ¼ b1 ¼ 1, a2 ¼ a3 ¼ b2 ¼
b3 ¼ 0).
Since linear plate bending theory is considered, the components of the membrane forces Nx, Ny , Nxy do

not depend on the deflection wp. They are given as

Fig. 3. Structural model of the plate and the beams.
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Nx ¼ C
oup
ox

�
þ m

ovp
oy

�
ð5aÞ

Ny ¼ C m
oup
ox

�
þ ovp

oy

�
ð5bÞ

Nxy ¼ C
1� m
2

oup
oy

�
þ ovp

ox

�
ð5cÞ

where C ¼ Ep=ð1� m2Þ; up ¼ upðxÞ and vp ¼ vpðxÞ are the displacement components of the middle surface of
the plate and are established by solving the plane stress problem, which is described by the following
boundary value problem (Navier’s equations of equilibrium)

r2up þ
1þ v
1� v

o

ox
oup
ox

�
þ ovp

oy

�
þ 1

Gp
qxd yð � ykÞ ¼ 0 in X ð6aÞ

r2vp þ
1þ v
1� v

o

oy
oup
ox

�
þ ovp

oy

�
¼ 0 ð6bÞ

c1un þ c2Nn ¼ c3 on C ð7aÞ

d1ut þ d2Nt ¼ d3 ð7bÞ
in which Gp ¼ Ep=2ð1þ mÞ is the shear modulus of the plate; Nn, Nt and un, ut are the boundary membrane
forces and displacements in the normal and tangential directions to the boundary, respectively; ci, di ði ¼ 1;
2; 3Þ are functions specified on C.

(ii) For each beam: Each beam undergoes transverse deflection and axial deformation. Thus, for the
transverse deflection we have

EbIb
d4wb
dx4

� Nb
o2wb
ox2

¼ qz �
oMb

ox
in Lk; k ¼ 1; 2; . . . ;K ð8Þ

a1wb þ a2V ¼ a3 at the beam ends x ¼ 0; l ð9aÞ

b1
owb
ox

þ b2M ¼ b3 ð9bÞ

where wb ¼ wbðxÞ is the transverse deflection of the beam; EbIb is its flexural rigidity; Nb ¼ NbðxÞ is the axial
force at the neutral axis; V,M are the reaction and the bending moment at the beam ends, respectively and
ai, bi ði ¼ 1; 2; 3Þ par are coefficients specified at the boundary of the beam. It is apparent that all types of
the conventional boundary conditions (clamped, simply supported, free or guided edge) can be derived
from Eqs. (9a) and (9b) by specifying appropriately the coefficients ai, bi (e.g. for a simply supported end it
is a1 ¼ b2 ¼ 1, a2 ¼ a3 ¼ b1 ¼ b3 ¼ 0).
Since linear beam bending theory is considered, the axial force of the beam does not depend on the

deflection wb. The axial deformation of the beam is described by solving independently the boundary value
problem i.e.

EbAb
o2ub
ox2

¼ �qx in Lk; k ¼ 1; 2; . . . ;K ð10Þ

c1ub þ c2N ¼ c3 at the beam ends x ¼ 0; l ð11Þ
where N is the axial reaction at the beam ends.

J.T. Katsikadelis, E.J. Sapountzakis / International Journal of Solids and Structures 39 (2002) 897–910 901



Eqs. (1), (6a), (6b), (8), (10) constitute a set of five coupled partial differential equations including seven
unknowns, namely wp, up, vp, wb, ub, qx, qz. Two additional equations are required, which result from the
continuity conditions of the displacements in the direction of the z and x axes at the interfaces between the
plate and the beams. These conditions can be expressed as

wp ¼ wb ð12Þ

up �
hp
2

owp
ox

¼ ub þ
hb
2

owb
ox

ð13Þ

It must be noted that the coupling of Eqs. (1), (6a) and (6b), as well as of Eqs. (8) and (10) is nonlinear
due to the terms including the unknown membrane and axial forces, respectively.

2.2. Definitions and estimation of the effective breadth

As it is already mentioned the design parameter of effective breadth is used when we consider a stiffened
plate subjected to lateral loading. Due to the aforementioned loading the plate bends out of its original
plane, while the distribution of the axial stresses across the plate is not uniform because of the transmission
of shear from the stiffener through the plate (shear lag phenomenon). The effective breadth of the slab is
defined as the breadth that would sustain a force equal to the actual force in the slab, if the longitudinal
stress across the breadth was constant and equal to the theoretical stress at the neutral axis of the slab at the
beam edge or at the axis of the stiffening beam (depending on the definition).
Following this definition, combining Fig. 4(a) with the following relation

beff ¼
R

rxdy
re

ð14Þ

Fig. 4. Effective breadth definitions according (a) to Timoshenko and Goodier (1951), (b) to Schade (1951), (c) to Wang and Ram-

merstorfer (1996) and (d) to Lee (1962).
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the effective breadth can be estimated according to Timoshenko and Goodier (1951). Similarly, concerning
other researchers, the values of the effective breadth can be obtained according to Schade (1951) combining
Fig. 4(b) with the following relation

beff ¼
R

rxdy
rmax

ð15Þ

according to Wang and Rammerstorfer (1996) combining Fig. 4(c) with Eq. (15) and according to Lee
(1962) combining Fig. 4(d) with the following relation

2beff ¼
2
R

rxdy
rmax

þ bw ð16Þ

In all the aforementioned definitions, the evaluation of the effective breadth presumes the estimation of the
distribution of the axial stresses across the plate, which is accomplished as follows.
After the solution of the nonlinear system of equations (1), (6a), (6b), (8), (10), (12) and (13) the un-

known plate wp and beam wb deflection, the displacement components up, vp of the middle surface of the
plate, the axial deformation of the beam ub and the interface forces qx, qz are established. The axial stresses
across the plate result from superposition of the bending and the inplane action of the plate. The axial
stresses ðrxÞb due to the bending action of the plate arising from the lateral external loading g, the lateral
line load �qz at the interfaces and the lateral line load �oMp=ox due to the eccentricity of the component qx

from the middle surface of the plate are given as

ðrxÞb ¼ � E
1� m2

z
o2wp
ox2

�
þ m

o2wp
oy2

�
ð17Þ

The axial stresses ðrxÞi due to the inplane action of the plate arising from the inplane line body force qx at
the middle surface of the plate are given as

ðrxÞi ¼ Cðup þ mvpÞ ð18Þ
where C ¼ Ep=ð1� m2Þ. Thus, the distribution of the axial stresses across the plate is given as

rx ¼ ðrxÞb þ ðrxÞi ð19Þ
or using Eqs. (17) and (18)

rx ¼ � E
1� m2

z
o2wp
ox2

�
þ m

o2wp
oy2

�
þ Cðup þ mvpÞ ð20Þ

Integrating across the plate the evaluated distribution of the axial stresses given from Eq. (20) the effective
breadth is estimated according to the aforementioned various definitions. For the purpose of this paper,
and having no other particular reason, the definition given in Timoshenko and Goodier (1951) will be
adopted (every other definition could also be utilized), while for comparison reasons all available definitions
will be used.

3. Numerical solution

The solution of the bending problem of a plate reinforced with beams is accomplished by developing the
AEM given in Sapountzakis and Katsikadelis (2000).
According to this method for the plate bending problem we assume wp as the sought solution of the

boundary value problem (1), (2a) and (2b). Applying the biharmonic operator to this function we obtain

r4wp ¼ qp in X ð21Þ
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Eq. (21) indicates that the solution of the original problem, Eq. (1), can be obtained from the solution of
a linear plate bending problem with unit stiffness, under the same boundary conditions and subjected to the
fictitious load distribution qpðxÞ. This problem is readily solved if the fictitious loading were known. Thus,
the problem is converted to that of establishing the unknown load density qpðxÞ. This is accomplished using
BEM as follows.
The solution of Eq. (21) is given in integral form as

ewpðxÞ ¼
Z

X
w

pqpdX �

Z
C

w

pVn

�
�
ow


p

on
Mn þ wpV 


n � owp
on

M

n

�
ds ð22Þ

where e ¼ 1, 1=2 or 0 depending on whether the point x is inside the domain X, on the boundary C, or
outside X, respectively and w


p is the fundamental solution given as

w

p ¼

1

8p
r2 ln r ð23Þ

The quantities M

n and V 


n are obtained from Eqs. (3) and (4), respectively, by replacing wp with w

p.

Using the integral representation (22) of wp and its normal derivative for x 2 C together with the
boundary conditions (2a) and (2b) the boundary quantities wp, owp=on, Mn, Vn can be eliminated from the
discretized counterpart of Eq. (22) which after collocation at theM domain nodal points and differentiation
with respect to x and y yields

fwpg ¼ ½P 
fqpg ð24Þ

fwp;xg ¼ ½Px
fqpg ð25aÞ

fwp;xxg ¼ ½Pxx
fqpg ð25bÞ

fwp;yyg ¼ bPyycfqpg ð25cÞ

fwp;xyg ¼ bPxycfqpg ð25dÞ

where ½P 
, ½Px
, ½Pxx
, bPyyc, bPxyc are known M � M coefficient matrices.
Finally, applying Eq. (1) to the M nodal points inside X we obtain

Dfqpg � ð½Nx
½Pxx
 þ 2bNxycbPxyc þ bNycbPyycÞfqpg ¼ fgg � ½Z
fqzg � ½X 
fqxg ð26Þ

where ½Nx
, bNxyc and bNyc are unknown diagonal M � M matrices including the values of the inplane
forces; fqzg and fqxg are vectors with L elements; L is the total number of the nodal points at the interfaces;
½Z
 is a position vector which converts the vector fqzg into a vector with length M. The matrix ½X 
 results
after approximating the derivative of Mp with finite differences. Its dimensions are also M � L.
For the plane stress problem following the procedure of the AEM presented in Katsikadelis and

Kandilas (1994) and using the same boundary and domain discretization the membrane forces for ho-
mogeneous boundary conditions (7a) and (7b) (c3 ¼ d3 ¼ 0) are expressed as follows

fNxg ¼ ½Fx
fqxg ð27aÞ

fNxyg ¼ bFxycfqxg ð27bÞ

fNyg ¼ bFycfqxg ð27cÞ

where ½Fx
, bFxyc and bFyc are known matrices with dimensions M � L.
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Similarly with the plate for the beam bending problem we assume wb as the sought solution of the
boundary value problem described by Eqs. (8), (9a) and (9b). Differentiating this function four times yields

d4wb
dx4

¼ qb ð28Þ

The solution of Eq. (28) is given in integral form as (Banerjee and Butterfield, 1981)

wbðxÞ ¼
Z l

0

w

bqbds þ w


bV
�

� ow

b

ox
M þ wbV 
 � owb

ox
M

�l

0

ð29Þ

where w

b is the fundamental solution given as

w

b ¼ 1

12
l3ð2þ jqj3 � 3jqj2Þ ð30Þ

with q ¼ r=l, r ¼ n � x, x 2 Lk, k ¼ 1; 2; . . . ;K, n at the beam ends x ¼ 0, l and the quantities M
 and V 
 are
given from the following relations

M
 ¼ 1
2
lð1� jqjÞ ð31aÞ

V 
 ¼ �1
2
sgnq ð31bÞ

Using the integral representation (29) of wb and its second derivative with respect to x for x on the
boundary of the beam together with the boundary conditions (9a) and (9b) the boundary quantities wb,
owb=on, M , V can be eliminated from the discretized counterpart of Eq. (29), which after collocation at the
L nodal points at the interfaces (for homogeneous boundary conditions (9a) and (9b) a3 ¼ b3 ¼ 0) yields

fwbg ¼ ½B
fqbg ð32Þ

where ½B
 is an L � L matrix.
Differentiating Eq. (29) with respect to x, eliminating the boundary quantities from the discretized

counterpart of these equations and collocating at the L nodal points at the interfaces (for homogeneous
boundary conditions a3 ¼ b3 ¼ 0) we obtain

fwb;xg ¼ ½Bx
fqbg ð33aÞ

fwb;xxg ¼ ½Bxx
fqbg ð33bÞ
where ½Bx
, ½Bxx
 are known L � L coefficient matrices.
Finally, applying Eq. (8) to the L nodal points at the interfaces we obtain

EbIbfqbg � ½Nb
½Bxx
fqbg ¼ fqzg � ½Q
fqxg ð34Þ
where ½Nb
 is unknown diagonal L � L matrix including the values of the inplane forces; fqzg and fqxg are
vectors with L elements. The matrix ½Q
 results after approximating the derivative of Mb with finite dif-
ferences. Its dimensions are also L � L.
For the beam axial deformation problem, the solution of Eq. (10) is given in integral form as (Banerjee

and Butterfield, 1981)

ubðxÞ ¼ �
Z l

0

u
bqxds þ u
b
dub
dx

�
� du



b

dx
ub

�l

0

ð35Þ

where

u
b ¼
1

2EbAb
ðl � jrjÞ ð36Þ
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Following the same procedure as for the beam bending problem the axial force at the neutral axis of the
beam for homogeneous boundary conditions (11) (c3 ¼ 0) can be expressed as follows

fNbg ¼ ½Fb
fqxg ð37Þ

where ½Fb
 is known matrix with dimensions L � L.
Eqs. (26) and (34) after elimination of the quantities Nx, Ny , Nxy , Nb using Eqs. (27a)–(27c) and (37)

together with continuity conditions (12) and (13) which after discretization at the L nodal points at the
interfaces are written as

fwpg ¼ fwbg ð38aÞ

fupg �
hp
2
fwp;xg ¼ fubg þ

hb
2
fwb;xg ð38bÞ

constitute a nonlinear system of equations with respect to qz, qx, qp, qb. This system is solved using iterative
numerical methods. Note that in Eqs. (38a) and (38b) the column matrices fupg, fubg are evaluated from
the relations

fupg ¼ bFpcfqxg ð39aÞ

fubg ¼ ½Fb
fqxg ð39bÞ

where ½Fp
, ½Fb
 are known L � L flexibility coefficient matrices the elements of which are evaluated
numerically following the steps of the AEM.
Following the solution of the aforementioned system of equations the evaluation of the effective breadth

is accomplished using any of the Eqs. (14), (15) or (16) after the calculation of the axial stresses rx using
Eq. (20).

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a computer
program has been written and representative examples have been studied to demonstrate the efficiency and
the range of applications of the developed method. In all the examples treated, the numerical results have
been obtained using 54 constant boundary elements and 162 constant domain rectangular cells (E ¼ 3:0�
107 kN/m2, hp ¼ 0:20 m, v ¼ 0:154).

Example 1: A rectangular plate with dimensions a � b ¼ 18:0� 9:0 m subjected to a uniform load
g ¼ 10 kN/m2 and stiffened by a beam with width 1.0 m through the center line of the plate has been
studied. The plate is simply supported along its small edges, while the other two edges are free. In Fig. 5 the
contour lines of the total axial stresses rx for different heights of the stiffening beam are presented. It is
worth noting that as the beam height increases the obtained values of the axial stresses are also increased
due to the rise of the interface forces qx.
After the evaluation of the axial stresses rx at the plate of the stiffened structure, the estimated values of

the effective breadth according to Timoshenko and Goodier (1951) for different heights of the stiffening
beam are presented in Fig. 6. From this figure it is easily concluded that the values of the effective breadth
are not constant along the stiffening beam increasing from the supported edges to the center of the stiffened
structure. Also, the variation of the effective breadth is significantly reduced as the beam height is increased.
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Moreover, in Fig. 7 the estimated values of the effective breadth according to Timoshenko and Goodier
(1951) are presented as compared with those obtained according to all other available definitions (Schade,
1951; Wang and Rammerstorfer, 1996; Lee, 1962) for the beam height hb ¼ 0:20 m. From this figure it is
easily concluded that the values of the effective breadth according to various definitions are almost iden-
tical.
Finally, in Figs. 8 and 9 the estimated values of the effective breadth for the beam heights hb ¼ 0:20 m

and hb ¼ 1:25 m according to Timoshenko and Goodier (1951) are presented as compared with those

Fig. 6. Effective breadth according to the definition of Timoshenko and Goodier (1951) of the stiffened plate of Example 1 for various

heights of the stiffening beam.

Fig. 7. Effective breadth according to the definitions of Timoshenko and Goodier (1951), Wang and Rammerstorfer (1996), Schade

(1951) and Lee (1962) of the stiffened plate of Example 1 for hb ¼ 0:40 m.

Fig. 5. Contour lines of the total axial stresses rx for (a) hb ¼ 0:20 m and (b) hb ¼ 1:25 m of the stiffened plate of Example 1.
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obtained from various codes. The discrepancy between the estimated values and the code proposed ones is
remarkable.

Example 2: The stiffened plate of example 1 subjected to a uniform load g ¼ 10 kN/m2 for various
heights of the stiffening beam has been studied and the values of the interface forces qz, of the effective

Fig. 10. Equivalent simply supported beam of variable cross-section subjected to the interface forces qz (a), plan view (b) and transverse

cross-section (c).

Fig. 8. Effective breadth of the stiffened plate of Example 1 for hb ¼ 0:20 m compared with the recommendations of various codes.

Fig. 9. Effective breadth of the stiffened plate of Example 1 for hb ¼ 1:25 m compared with the recommendations of various codes.
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breadth and of the deflections along the axis of the beam have been calculated. In Fig. 11 and in Table 1
these deflections (AEM) are presented as compared with those obtained from the solution of an equivalent
simply supported beam subjected to the interface forces qz and having variable cross-section consisting of
the cross-section of the beam and a part of the plate corresponding to the estimated effective breadth (Fig.
10). The discrepancy of the obtained results necessitates the consideration of the inplane forces and de-
formations, which in the case of the simply supported beam have been neglected. Moreover, for justifi-
cation of the accuracy of the results of the proposed model, in Table 1 the aforementioned obtained
deflections (AEM) are compared with those obtained from an accepted finite element code (Sofistik, 1995)
solving the corresponding three-dimensional elasticity problem (FEM). Very good agreement is easily
verified.

Table 1

Deflections wðmÞ at L=2 (center) and L=4 of the beam of the stiffened plate of Example 2 (AEM) compared with those obtained from a
3-D FEM solution and from the equivalent beam for various beam heights

Beam L=2 (Center) L=4

AEM FEM Equivalent beam AEM FEM Equivalent beam

1:0� 2:00 3.4110E)04 3.910E)04 4.5900E)03 1.9960E)04 2.021E)04 3.2800E)03
1:0� 1:25 1.1850E)03 1.228E)03 1.4990E)02 6.8720E)04 6.953E)04 1.0850E)02
1:0� 0:60 7.6400E)03 7.860E)03 7.3800E)02 4.4070E)03 4.541E)03 5.4150E)02
1:0� 0:40 1.9240E)02 1.995E)02 1.3432E)01 1.1150E)02 1.181E)02 9.9840E)02
1:0� 0:20 6.6100E)02 6.782E)02 3.8264E)01 3.9470E)02 4.010E)02 2.8352E)01

Fig. 11. Deflections wðmÞ along the beam axis of the stiffened plate (AEM) compared with those of the equivalent beam of Example 2
for various beam heights.
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5. Concluding remarks

In this paper a realistic estimation of the effective breadth of a stiffened plate has been presented. For the
estimation of the effective breadth the adopted model contrary to the models used previously takes into
account the resulting inplane forces and deformations of the plate as well as the axial forces and defor-
mations of the beam. The main conclusions that can be drawn from this investigation are:

(a) The values of the effective breadth are not constant along the stiffening beam increasing from the
supported edges to the center of the stiffened structure. Also, the variation of the effective breadth is
significantly reduced as the beam height is increased.

(b) The values of the effective breadth according to various definitions given from various researchers are
almost identical.

(c) The discrepancy between the estimated values of the effective breadth using the presented procedure
and the code proposed ones is remarkable. It is worth here noting that most of the code proposed
values are independent from the height of the stiffening beam.

(d) The discrepancy of the obtained deflections using the proposed model and an equivalent simply sup-
ported beam having variable cross-section according to the estimated effective breadth and subjected
to the transverse interface forces necessitates the consideration of the inplane forces and deformations.
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